The Most Symmetric Drift Waves

نویسندگان

  • Volodymyr TARANOV
  • V. Taranov
چکیده

Low frequency drift oscillations play an important role in the transport processes in magnetized plasmas, so they are intensely studied in recent decades [1]. The main problem in the drift waves investigations is the presence of nonlinear effects even at relatively small amplitudes. Nonlinear generation of the high space harmonics and their accumulation in the initial disturbance zone complicate numerical simulations of the drift waves evolution [2]. Thus some analytical approach based on symmetry analysis of the model is needed. In the present work, comparative symmetry analysis is carried out for Hasegava–Mima model for the drift waves in a plasma and for the well known Korteweg–de Vries (KdV) model. In the Section 2, symmetries and the most symmetric solutions of the KdV model are reviewed as an illustrative example. This model has sufficiently large symmetry for the existence of a family of the most symmetric stable solutions called solitons. In the Section 3, Hasegawa–Mima model symmetries and solutions are considered, both continuous and discrete symmetries are taken into account. General form of the most symmetrical solutions of the Hasegawa–Mima model is determined.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Added Resistance & Drift Force Analysis in Regular and Irregular Waves

The sea wave causes excess resistance which is out of scope of calm water resistance. The total wave force in horizontal plane is divided into “Added Resistance” and “Drift Force”. In this study, based on Gerritsma and Beuckelman[3] hypothesis a computer program has been developed for calculation of added resistance and drift force at various ship speeds and various head...

متن کامل

On the Dynamic Characteristic of Thermoelastic Waves in Thermoelastic Plates with Thermal Relaxation Times

In this paper, analysis for the propagation of general anisotropic media of finite thickness with two thermal relaxation times is studied. Expression of displacements, temperature, thermal stresses, and thermal gradient for most general anisotropic thermoelastic plates of finite thickness are obtained in the analysis. The calculation is then carried forward for slightly more specialized case of...

متن کامل

HF doppler sounder measurements of the ionospheric signatures of small scale ULF waves

An HF Doppler sounder, DOPE (DOppler Pulsation Experiment) with three azimuthally-separated propagation paths is used to provide the first statistical examination of small scale-sized, high m waves where a direct measurement of the azimuthal wavenumber m, is made in the ionosphere. The study presents 27 events, predominantly in the post-noon sector. The majority of events are Pc4 waves with azi...

متن کامل

Traveling Waves of Some Symmetric Planar Flows of Non-Newtonian Fluids

We present some variants of Burgers-type equations for incompressible and isothermal planar flow of viscous non-Newtonian fluids based on the Cross, the Carreau and the power-law rheology models, and on a symmetry assumption on the flow. We numerically solve the associated traveling wave equations by using industrial data and in order to validate the models we prove existence and uniqueness of ...

متن کامل

Analysis of Wave Motion in a Micropolar Transversely Isotropic Medium

The present investigation deals with the propagation of waves in a micropolar transversely isotropic layer. Secular equations for symmetric and skew-symmetric modes of wave propagation in completely separate terms are derived. The amplitudes of displacements and microrotation were also obtained. Finally, the numerical solution was carried out for aluminium epoxy material and the dispersion curv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003